A multiplicative Banach-Stone theorem
نویسنده
چکیده
The Banach-Stone theorem states that any surjective, linear mapping T between spaces of continuous functions that satisfies ‖T (f)− T (g)‖ = ‖f − g‖, where ‖ · ‖ denotes the uniform norm, is a weighted composition operator. We study a multiplicative analogue, and demonstrate that a surjective mapping T , not necessarily linear, between algebras of continuous functions with ‖T (f)T (g)‖ = ‖fg‖ must be a composition operator in modulus.
منابع مشابه
Almost multiplicative linear functionals and approximate spectrum
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...
متن کاملA Concise Proof of the Multiplicative Ergodic Theorem on Banach Spaces
We give a streamlined proof of the multiplicative ergodic theorem for quasi-compact operators on Banach spaces with
متن کاملA noncommutative version of the Banach-Stone theorem (II).
A noncommutative version of the Banach-Stone theorem (II). Abstract In this paper, we extend the Banach-Stone theorem to the non commutative case, i.e, we give a partial answere to the question 2.1 of [13], and we prove that the structure of the postliminal C *-algebras A determines the topology of its primitive ideals space.
متن کاملADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE
In this work, we investigate admitting center map on multiplicative metric space and establish some fixed point theorems for such maps. We modify the Banach contraction principle and the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some useful theorems. Our results on multiplicative metric space improve and modify s...
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کامل